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Abstract  0 In determining intestinal wall permeabilities, several mass 
transport models may be applied to analyze the results from external 
perfusion experiments. The appropriateness of any given model depends 
on the applicability of the model assumptions to the experimental system. 
This report compares several mass transport models with respect to their 
assumptions and applicability to a particular experimental design. The 
models are shown to differ in their assumptions regarding convection and 
diffusion in the perfusing fluid. However, since the wall permeability is 
an unknown parameter in each model and is estimated from the data, 
all of the models f i t  the mass transfer results reasonably well, despite 
fundamentally different assumptions. However, the determined per- 
meabilities differ. Residence time distribution analysis of the experi- 
mental system is more sensitive to the model assumptions. I t  is shown 
that, in a particular experimental system, laminar flow in a cylindrical 
tube is the most appropriate model. The model also has the advantage 
of implicitly accounting for the convection-diffusion problem in the 
perfusing fluid. Hence, the diffusion layer thickness is not estimated from 
the data. With the hydrodynamics defined, the relative permeabilities 
resulting from the application of the several models to the data can be 
interpreted. The wall permeability determined in the suggested manner 
provides an estimate of the limiting assistance under perfect mixing 
conditions. 

Keyphrases Permeability-mass transport models of intestinal wall 
permeability Models, hydrodynamic-mass transport models of in- 
testinal wall permeability Diffusion-mass transport models of in- 
testinal wall permeability 

In determining the permeability of the intestinal wall 
by external perfusion techniques, several models have been 
proposed (1-5). In each model, assumptions must be made 
regarding the convection and diffusion conditions in the 
experimental system. These assumptions, in turn, affect 
the interpretation of the resulting permeabilities. In ad- 
dition, the appropriateness of the assumptions in the 
models to the actual experimental situation must be de- 
termined. Often, good agreement between the predicted 
(theoretical) result and the experimental result is used to 
support the validity of the model. However, in many cases, 
several models may be equally satisfactory, particularly 
when significant variation occurs from experiment to ex- 
periment. In this situation, independent experiments that 
are more sensitive to the assumptions in the models are 
needed to substantiate their validity. 

This report shows that several reasonable models for 
mass transfer in external perfusion experiments can ac- 
count for the data reasonably well because the actual wall 
permeability is unknown. That is, if the permeability is 
treated as a parameter and is estimated from the data, all 
of the models can describe the data relatively well. 

However, the resulting permeabilities differ, and their 
interpretation rests on the validity of the assumptions. 
Consequently, residence time distribution analysis is used 
to obtain more direct insight into the convection and dif- 
fusion assumptions of the mass transfer models. Since the 
laminar flow model discussed previously (5) has the ad- 
vantage of providing a direct measure of the wall perme- 

ability, the experimental system used was one that maxi- 
mizes the possible attainment of these conditions. 

EXPERIMENTAL 

[14C]Polyethylene glycol1 was used for the residence time studies. 
Assays were conducted by liquid scintillation. For the residence time 
perfusion experiments, male Holtzman rats (250-350 kg) were fasted for 
12-18 hr and anesthetized with an intramuscular (gluteal muscle) dose 
of 150 mg/100 g with a 50% urethan solution. A midline abdominal inci- 
sion was made, and the intestine was cannulated 2 and 10 cm distal to 
the ligament of Treitz. The entrance tubing was connected to a three-way 
stopcock such that the test solution would flow straight through the 
stopcock. The buffer solution, isotonic Sorensen’s buffer a t  pH 7.3, was 
perfused through the remaining stopcock arm for 20-30 min. 

The experiment was initiated by turning the stopcock to the test so- 
lution (polyethylene glycol-Sorensen’s buffer) a t  time zero. Samples were 
collected at 15-sec intervals for -2 min ( 2 t )  and then a t  30-sec intervals 
for up to -6 min (6t) .  From the collected samples, 0.1 ml was transferred 
by micropipet to the counting vial. For the step change in concentration, 
the test solution was perfused throughout the experiment. For the (finite) 
pulse change, the stopcock was switched from the buffer to the test so- 
lution and back to the buffer over about a 2-sec interval. The flow rate 
was 0.5 ml/min for all experiments. 

At the conclusion of the experiment, the animal was sacrificed and the 
cannulated intestine was excised. The length and volume of the excised 
intestine were measured to estimate the residence time in the perfused 
segment. The mass transfer studies used 13H]estrone1 and followed a 
procedure described previously (6). 

RESULTS AND DISCUSSION 

Mass Transfer  Models-Four models will be described that differ 
in their convection and diffusion assumptions (Fig. 1). These models 
include the laminar flow, plug flow, and complete radial mixing (diffusion 
layer) models for convective mass transport in a tube and the perfect 
mixing tank model. I t  is convenient to begin with the solute transport 
equation in cylindrical coordinates (5,7): 

(Eq. 1) 

where: 

vz = axial velocity distribution 
D = solute diffusivity in the solvent 
C = concentration of A in B 
z = axial coordinate 
r = radial coordinate 

Introduction of the dimensionless variables: 

Z *  = t/L 
r* = r/R 
u ;  = v,/v, 

G t  = DL/V,R2 = rDLI2Q 
R = radius of the tube 
L = length of the tube 

V ,  = maximum velocity 
Q = perfusion flow rate 

gives: 

1 New England Nuclear, Boston, Mass. 
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Table I-Summary of Various Models 

Model Equation Variables Comments 

Laminar flow 
Plug flow 

C,/Co = ZM, exp( -P",z) 
C,/Co = ZM; exp(-P;Gz) 

P ;  and Gz 
P: and Gz 

M, and P,, are functions of Pt, (Ref. 5) 
ML and p: are functions of P: (Ref. 8) 

PAP; Complete radial mixing C,/Co = exp(-4PirfGz) P;,I and Gz P;ff = - PA + P;, 
Pb'PL, Mixing tank C,/Co = (1 + 4P:ffG~)-' P'& and Gz Pbj, = 

Pb' + PL, 

(Eq. 2) 

This relationship is subject to the first-order boundary condition a t  the 
wall: 

(Eq. 3) 

where PL = P,R/D = the dimensionless wall permeability. 
The main assumptions in arriving a t  Eqs. 1 and 2 are: (a )  the diffusivity 

and density are constant; ( b )  the solution is dilute so that the solvent 
convection is unperturbed by the solute; ( c )  the system is a t  steady state 
(dC/d t  = 0); ( d )  the solvent flows only in the axial ( z )  direction; ( e )  the 
tube radius, R,  is independent of Gz; and (1) axial diffusion is small 
compared to axial convection (7). The boundary condition (Eq. 3) is true 
for many models having a tube wall but does not describe a carrier 
transport or Michaelis-Menten process a t  the wall, except at low solute 
concentrations. Rewriting Eqs. 2 and 32 gives: 

It is clear that  the solution is C = C(r ,  z ,  Gz, P t ) .  That is, Gz and l':" are 
the t,wo fundamental independent (dimensionless) variables. Since the 
measured exit concentration is generally a velocity-averaged concen- 
tration (cup-mixing concentration), averaging over r gives: 

where z (dimensionless) is set equal to 1 (i.e.,  the concentration is mea- 
sured a t  the end of the tube). For the several models discussed here, the 
given solution refers to the cup-mixing concentration, and Gz and PL are 
the only fundamental independent variables. However, the Pa value will 
have different interpretations within the context of the different 
models. 
Laminar Flow Model-In the laminar flow model, the velocity profile 

is taken to be that for a Newtonian fluid in a tube: 

u ;  = vJV,  = 1 - r2  (Eq. 7) 

where V, = 2 ( u )  and (L') is the average flow velocity; i.e., Q = ( 0 )  aR2.  
With this velocity profile, Eq. 4 is separable and with the houndary 
condition in Eq. 5 has the solution (5): 

C,/Co = C M ,  exp(-fl:Gz) (Eq. 8 )  
1 

where C, is the exit cup-mixing concentration a t  length L and CO is the 
inlet concentration (constant). The laminar flow model will be discussed 
in detail in a report" that  also contains tabulated values of the M ,  and 
,~3,~ values as a function of P: , .  

Plug Flow Model-In the plug flow model, the velocity profile is 
considered to be independent of both r and z .  That  is, u, = Q / s R 2  and 

is constant; hence, V ,  = V ,  and V ;  = 1. The solution to Eqs. 4 and 5 is 
18): 

C,/Co = Z Mk exp(-fl;Gz) (Eq. 9) 

where M: = -4P:/(fl? + 6',2P','*) and the p',, values are the roots of the 
equation: 

B'JlCP')  - P';Jo(P) = 0 (Eq. 10) 
with J1 and J O  being zero-order bessel functions of the first and second 
kinds. The roots of Eq. 10 are tabulated in Refs. 8 and 9. 

With this model, the assumption that V, is constant is one of perfect 
slip a t  the wall. That is, V,  is constant throughout the fluid while the 
velocity of the wall is zero. However, there is radial diffusion as well as 
a corresponding concentration gradient toward the wall. The PI; value 
is the true wall permeability if the actual hydrodynamics are of this type. 
For a given wall permeability, the plug flow model predicts greater ab- 
sorption of the solute compared to the laminar flow model due to greater 
convection near the wall. 

Complete Radial Mixing Model-For this model, the velocity profile 
is assumed to be constant as with the plug flow model. In addition, the 
concentration is assumed to be constant radially but not axially. That  
is, there is complete radial, but not axial, mixing to give uniform radial 
velocity and concentration profiles. With these assumptions, Eq. 4 and 

Laminar Flow 
Concantrat ion 

C + m  LL A Q 

L W  

Plug Flow 

CW 
Complete Radial Mixing 

Cm 
Q 

Mixing Tank 
I 

Hereafter, all equations will be in dimensionless form but the asterisk will he 
delqted from the r and I symbols except where the context clearly indicated oth- 
erwise. 

See R. 1.. Elliott, G. L. Amidon, and E. N. Lightfoot, J .  Theor. H i d ,  in 
press. 

Cw Cm 
Figure 1-Velocity and concentration profiles for the models. The 
concentration profiles also are a function of z except for the miring tank 
model. 
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the boundary condition (Eq. 5) have the solution (5 ) :  

CmICo = e~p(-4P;~,-Gz) (Eq. 11) 

where P& replaces P f .  Since no aqueous resistance is included directly 
in the model, the wall resistance usually is augmented with a film or 
diffusion layer resistance. That is, complete radial mixing occurs up to 
a thin region or film adjacent to the membrane. The aqueous (luminal) 
resistance is confined, within this model, entirely to this region in series 
with the membrane. Hence, the wall permeability includes an aqueous 
or luminal resistance term and can be written as: 

(Eq. 12) 
P X  Piff = - 

P;  + P; 
where P;, is the true wall permeability and Pi is the effective aqueous 
permeability (1-3,5). 

The aqueous permeability often is written as: 

Pa = D/6 
or: 

(Eq. 13) 

P; = R / 6  (Eq. 14) 

where 6 is the film thickness and represents an additional parameter that 
needs to be determined from the data to obtain P;. Since the assumed 
hydrodynamic conditions probably are not realistic at the low Reynolds 
numbers for typical experiments, Pi  or 6 / R  is an empirical parameter. 

The complete radial mixing model also can be derived from a differ- 
ential mass balance approach (1) and often is referred to as the diffusion 
layer model. A comparison of the laminar flow and complete radial mixing 
models will be reported later?. 

Mixing Tank Model-This model takes the next step and assumes 
that both radial and axial mixing are complete. The aqueous resistance 
again is thought to be confined to a region (film) next to the membrane 
where only molecular diffusion occurs, whereas the rest of the contents 
are well mixed (perfect mixer). This model is described most easily by 
a mass balance on the system: 

(mass/time)i,l,t - (mass/time)o,t~,t = (mass/tirne).b,,,b,d 
(Eq. 15a) 

or: 

QCo - QCm = (2*RL)(P;ff)Cm (Eq. 156) 

where 27rRL is the area of the mass transfer surface (cylinder) of length 
L and radius R ,  P',ff is the permeability or mass transfer coefficient of the 
surface, and C ,  is the concentration in the tube (which is constant and 
equal to the outlet concentration by the perfect mixing assumption). 
From Eq. 15b is obtained: 

- CLL 

Cm 
(Eq. 16) 

or: 
CO/C, = 1 + 4 P;;rcz (Eq. 17) 

As with the complete radial mixing model, P?n contains the additional 
parameter P: = R/6' that must be estimated from the data. The P: and 
Pk;, values for the mixing tank model differ from those for the complete 
radial mixing model by nature of the different hydrodynamic assump- 
tions. While this model probably is not appropriate to most perfusion 
experiments, it will be useful to compare its ability to correlate mass 
transfer data with the other models. 

Model Comparison and Summary-Table I summarizes the models 
with respect to the predicted mass transfer. If the true wall permeability, 
Pk, were known, then each model could be tested against the data to 
determine its ability to reproduce the data. Since this is not the case, the 
appropriate Pf or P& value must be determined from the data. A test 
of the model then is to determine its ability to correlate the data, given 
a value for the permeability (estimated from the data). That is, the 
equations in Table I correlate the observed Cm/Co as a function of the 
Gz value, with the permeability being used as a variable parameter. 

Mass Transfer Results-Figure 2 presents the results using the 
simple mixing tank model (Eq. 17). The best-fit line (with zero intercept) 
is: 

(co/c,) - 1 = 6.97Gz (Eq. 18) 

with n = 17, s = 0.064, and p < 0.0005. The standard error of the slope 
is 0.43. The P& calculated from Eq. 17 is 1.7. Given the simplicity of the 

0 

0. 

0 

r 

I 

c, EO . - 3 

0 

C 

. 

I I 1 I I 1 I I 

' 1 2 3 4 5 6 7 8  
Gz X 10' 

Figure 2-Graph of (Co/C,) - I versus Gz following the mixing tank 
model (-) and the experimental data (0 )  for estrone. 

model, it accounts for the data reasonably well. However, from the graph, 
it is clear that systematic deviations occur from the best-fit line. If the 
two data points at the highest Gz value were removed from the data set, 
the model would do quite well. 

Figure 3 presents the data as well as the best-fit lines for all four models. 
The permeabilities were estimated uia linear regression following Eqs. 
11 and 17 and by nonlinear regression following Eqs. 8 and 9 for the re- 
spective models. The resulting permeabilities are given in Table 11. From 
Fig. 3, it is clear that it is not possible to choose from among the models 
on the basis of the mass transfer data if the permeability itself is esti- 
mated from the data. The permeabilities differ for the various models. 
Interpretation of the respective permeabilities requires knowledge as to 
which model most closely reflects the actual experimental situation. 

Residence Time Distribution Analysis-To interpret the mass 
transfer results and the associated permeabilities, it is necessary to es- 
tablish the actual hydrodynamics. Since, as noted, the mass transfer data 
are not sensitive to the model if the wall permeability is known, an in- 
dependent method that is more sensitive to the hydrodynamics is re- 
quired. In any given situation, the hydrodynamics implied (assumed) by 
one or another of the mass transfer models may be the most appropriate. 
The experimental design used for this study maximized the possible at- 
tainment of laminar flow. 

Residence time distribution analysis provides one method for deter- 
mining flow characteristics (10-12). A step or pulse change in the inlet 
concentration of a completely inert tracer is made, and the resulting 
appearance of the tracer in the outlet stream is monitored. The appear- 

Table 11-Permeability Values Estimated from the Data for the 
Various Models 

Model Permeabllitv" 

Mixing tank 1.7 (f0.9) 
Complete radial mixing 2.0 (f0.3) 
Plug flow 3.1 (rt0.5) 
Laminar flow 5.7 (f1.3) 

a Dimensionless permeability. Values in parentheses represent the approximate 
95% confidence intervals. 
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For the perfect mixer model, they are: 
F = 1 - e - t / l  

1 -  E = _ e - t / l  

t 
For the laminar flow model, they are: 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3- 

0.2 

0.1-; 

(Eq. 26a) 

(Eq. 266) 
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Figure 3-Graph of log(1OOCm/C0) versus Gz for the several models and 
the experimental data ( 0 )  for estrone. Key: - -, mixing tank model; -, 
complete radial mixing model; - - -, plug flow model; a n d .  - a, laminar 
flab model. 

ance of tracer in the outlet stream is a function of the flow (hydrody- 
namic) conditions since these conditions, in turn, determine the length 
of time a given fluid element entering the inlet stays in the apparatus. 
In dealing with potentially very simple hydrodynamics, three simple 
models are appropriate: mixing tank, plug flow, and laminar tube flow. 
The step change in concentration, C = 0 a t  t < 0 and C = CO a t  t > to, at 
the inlet gives the F curve, while a finite pulse change (12) gives the E 
curve. The F curve is defined as: 

F =  (C)/Co (Eq. 19) 

where ( C )  is the exit cup-mixing concentration and Co is the inlet con- 
centration. 

The E curve is defined by: 

E = dFIdt (Eq. 20) 

For a pulse change in concentration at the inlet with a total mass, M ,  
of tracer injected: 

M = Jw ( C )  dt  (Eq. 21) 

and the E curve is obtained from: 

The (experimental) mean residence time, i, in the apparatus is ob- 
tained from: 

t =  L - i E d t  (Eq. 23) 

for the pulse change and from: 

t = L" (1 - F )  dt (Eq. 24) 

for the step change. The corresponding F and E functions for the plug 
flow model are: 

F = O  t < t  (Eq. 25a) 

F = l  t > t  (Eq. 256) 

E = O  t # i  (Eq. 25c)  

E = input function t = t (Eq. 25d) 

F = 1 -(A)* t > ? / 2  (Eq. 27a) 

1 > t / 2  (Eq. 27b) 9 1 
2 t 3  

E = - -  

The theoretical E and F curves for these models using 0 = t / t  as dimen- 
sionless time are shown in Fig. 4. These models contain only one pa- 
rameter, t .  

More complex, two- (or more) parameter models, e.g., tanks in series 
or a dispersion model, could be fitted to the data. However, given the 
simplicity of the flow situation, this is unnecessary. 

The experimental results from the intestinal perfusion studies also are 
shown in Fig. 4 .  Since the plug flow model clearly is inappropriate, it will 
not be analyzed further. 

Table 111 presents the mean residence times estimated by the following 
three methods: (a )  the volume measurement of the intestine at  t = V/Q, 

e 
a 

0 
b 

Figure 4-Curues for perfusion experiments, F versus d = th (a) and 
E versus 0 (b). Key:  - - -, mixing tank model; -, laminar flow model; - . -, 
plug flow model; and 0, experimental results. 
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Table 111-Estimated Mean Residence Times 

Mixing Tank Laminar Flow 
t (Area) t (regression)b T (regression)h Experiment” ’ (3 

1 65 60.6 63.9 (13) 60.8 (5) 
2 51.5 52.4 i R \  ’ . ~ .  57.8 i5j 

52.6 53.0 iii) 56.8 (4) 
70.1 67.5 (13) 76.1 (9) 

5 97 86.2 82.7 (23) 79.4 (5) 
6 97 82.3 74.8 i i i j  77.2 ii3) 
7 78 65.5 55.8 (11) 55.7 (5) 
8 78 71.5 68.7 (16) 65.0 (2) 
9 78 81.2 75.8 (14) 76.2 (10) 

10 43 46.0 73.6 (75) 37.4 (2) 
11 43 46.2 70.6 (63) 34.6 (3) 
12 85 86.6 230.3 (300) 89.9 (8) 
1 3 85 99.2 237.0 (310) 74.9 (1) 

a Experiments 1-9 represent step changes in inlet concentration, and Experi- 
Numbers in parentheses ments 10-13 represent pulse changes in concentration. 

represent approximat.e 95% confidence intervals. 

(b) integration following Eq. 23 or 24, and (c) nonlinear regression fitting 
of the mixing tapk and laminar flow models to the data using the mean 
residence time, t ,  as the only parameter. 

The results in Fig. 4 and Table I1 clearly suggest that  the laminar flow 
model is the most appropriate of the three simple models. However, the 
data suggest that  some mixing or dispersion is occurring in the system 
since the tracer appears a t  the outlet somewhat faster than laminar flow 
would predict. 

Interpretation of Mass Transfer  Data-Given the results of the 
residence time studies, the permeabilities are interpreted most appro- 
priately on the basis of laminar flow hydrodynamics. The estrone per- 
meability value of 6, determined under the assumption of laminar flow, 
represents an estimate of the true wall permeability. The  luminal diffu- 
sive component, Piq, is not included in the wall permeability. In fact, if 
the flow is laminar, Piq can be calculated from the model (5). 

Assuming that the laminar flow permeability measures the wall per- 
meability, the permeabilities resulting from application of the other 
models can be interpreted. The plug flow value of 3 is lower than the 
laminar flow result since a larger membrane resistance is needed to 
compensate for the lower estimate of the aqueous resistance. That is, the 
larger amount of convection near the wall in the plug flow model leads 
to a larger Piq than actually is the case. Consequently, the membrane 
permeability must be lower to account for the observed result. 

The permeability value for the complete radial mixing model of 2 is 
lower than the plug flow (and laminar flow) model since this model as- 
sumes radial mixing, which leads to still lower estimated luminal 
(aqueous) resistance values and a higher estimated membrane resistance 
(lower permeability value). However, the usual interpretation of the 
complete radial mixing model recognizes that the permeability value 
includes an aqueous (film) resistance. 

The mixing tank model takes the final step in assuming both radial 
and axial mixing. The permeability value for this model is the lowest of 
all of the models. Again, this result is due to the low luminal resistance 
implied by the model. As with the complete radial mixing model, a film 
resistance usually is included in the wall permeability to account for the 
presence of an aqueous resistance. 

If, as suggested, the complete radial mixing Permeability includes a 
film (diffusion layer) aqueous resistance, the permeability value should 
be that obtained from the laminar flow model augmented by a Piq value 
following Eq. 12. However, Piq is a function of both Pu and Gz and, hence, 
must be calculated a t  every flow rate (Gz value) using the known P; 
value. However, an estimate of Piq can be made that is not greatly in error 
by using the O P i q  value for sink conditions at the wall and an average Gz 
value (5). This approach gives O P i q  = 3.7. The predicted permeability for 
the complete radial mixing model thus is 2.2, which is in good agreement 
with the estimated value of 2.0. A more detailed discussion of the basis 
for this calculation was given previously (5,6). 

This discussion illustrates one major advantage of the laminar flow 
approach. The diffusion layer thickness is not a parameter in the model, 
and the wall permeability can be calculated directly. In the complete 
radial mixing model, the Piq (equal to RIS) value enters the model to 
account for the unknown hydrodynamics and, hence, must be estimated 
from the data as well. The residence time distribution analysis indicates 
that  laminar flow can be established to a reasonable approximation in 
external perfusion experiments. Consequently, there is no need to in- 
troduce a new parameter. 

With respect to the normal physiological situation, the hydrodynamics 
clearly are much more complex. However, the wall permeability is of 
intrinsic interest since it represents the limiting (controlling) resistance 
under perfect mixing conditions. Consequently, the wall permeability 
can be used to quantitate the absorption characteristics of drugs as well 
as for an experimental approach to the study of the nature of the wall 
resistance. 

CONCLUSION 

Four mass transport models that can be applied to intestinal perfusion 
studies were developed and compared. The models differ with respect 
to the assumptions regarding convection and diffusion in the perfusing 
fluid. If the wall permeability is estimated from the experimental results, 
all of the models work reasonably well. The wall permeabilities fall in the 
order mixing tank < complete radial mixing (diffusion layer) < plug flow 
< laminar flow. 

Residence time distribution analysis was employed as a more sensitive 
measure of the validity of the underlying model assumptions. In the ex- 
perimental system employed, laminar flow in a circular duct is the most 
appropriate model. This model provides the most direct measure of the 
intrinsic wall (membrane) permeability. The permeabilities for the 
various models are in the expected order for the test system, with the wall 
permeability decreasing in direct proportion to the extent to which the 
models overestimate the aqueous permeability. 

It is concluded that laminar flow in an externally perfused intestine 
is attainable experimentally and provides the most direct measure of the 
intrinsic wall permeability. The wall permeability, in turn, represents 
the limiting permeability under perfect mixing conditions. 
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